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1 Introduction 

Due to its selectivity and sensitivity, neutron activation analysis (NAA) occupies an important 
place among the various analytical methods. It has proven to be a powerful non-destructive 
analytical technique for concentrations at or below the µg/g range, while up to 60 elements 
can be determined, performing two irradiations and several gamma-spectrum measurements 
after different decay periods. The main fields of NAA application are analytical chemistry, 
geology, biology and the life and environmental science. Its accuracy, the virtual absence of 
matrix effects and the completely different physical basis when compared to other analytical 
techniques, make it particularly suitable for the certification of candidate reference materials 
(RMs), providing e.g. the bulk of the literature data on the standard RMs of the National 
Institute of Standards and Technology [1] and reference materials of the International Atomic 
Energy Agency. 
 
The k0 standardisation method of NAA (k0-NAA), a concept launched in 1975, can be 
interpreted as an absolute standardisation method. It relies on k0 and Q0 factors and a few 
other parameters [2], which are composite physical constants that can be derived from the 
basic nuclear data. In practice they are usually determined by direct measurements, partly 
because equivalent constants derived from the basic data are often discrepant.  
 
The purpose of this paper is to: 

• define the reaction rate equations as used in NAA and their relation to the exact 
definitions from the basic nuclear data, 

• identify sources of uncertainties and approximations and their propagation to 
calculated reaction rates. 

 
The overall objective is to define the basis that will improve the understanding of the 
definitions and lead eventually to the improvement in the nuclear constants for NAA, as well 
as the basic nuclear data where accurately measured composite constants for NAA can 
provide additional constraints for the basic nuclear data evaluation process. 
 

2 Definitions 

2.1 Specific activities 
When a material is placed in a neutron field, some nuclei of the material may capture neutrons 
to form excited nuclei, which return promptly to the ground state by emitting gamma 
radiation. The capture product nuclei are often radioactive. Decay by particle emission 
produces decay product nuclei in an excited state, which go into the ground state by again 
emitting gamma radiation. Gamma radiation associated with radioactive decay of a nucleus is 
actually the radiation of its decay product returning to the ground state. Different variants of 
the activation analysis as an analytical technique differ in the radiation that is being measured. 
Usually these are either prompt gamma rays emitted by the excited capture product or the 
delayed gamma rays emitted by the excited decay product nuclei. 
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If irradiation is performed in a neutron field with a significant fraction of high energy 
neutrons, it may happen that some threshold reactions on other nuclei present in the sample 
produce the same product nucleus as obtained by capture in the measured nucleus. Also, if 
some fissile material is present in the sample, such material may yield on fission a small 
amount of nuclei equal to the capture product nuclei. These are interference reactions and 
must be taken into account. 
 
During irradiation some of the capture products decay and some may themselves interact with 
neutrons to form a different nucleus and are lost for the purpose of the measurement. At high 
neutron flux levels the target nuclei may become depleted, what also affects the production of 
the capture-product nuclei. The differential equation governing the rate of change of the 
concentration of the nuclei of interest is given by: 
 

ccccfffhhmm
c NNNNN

td
Nd λσφγσφσφσφ −−++=  

 
where φ is the neutron flux, σ are the cross sections, N the nuclei number densities in the 
sample, λ the decay constant and γ the fission product yield. The suffixes are: “m” for the 
measured nuclei, “c” for the capture products, “f” for the fissile nuclei and “h” for nuclei that 
form nucleus “c” from high energy threshold reactions with cross section σh. A similar 
equation can be written for each type of nucleus, forming a system of coupled first order 
linear differential equations that can be solved numerically, or analytically (with some 
approximations, usually by neglecting all terms on the right-handside except the first and the 
last.). 
 
Specific activity of a sample is the measured activity at the end of irradiation, corrected for 
the change of the concentration of the decaying nucleus due to measuring time, cooling time 
and irradiation time. It can be shown analytically that specific activity is proportional to the 
average reaction rate that produces the nucleus, which generates the emitted radiation that is 
being measured. Therefore, from the measured activity it is possible to determine the reaction 
rate and hence the concentration of the measured nucleus, provided we know the neutron flux 
and the corresponding nuclear constants. The remainder of this paper is devoted to the topic 
of reaction rate calculation and to associated nuclear constants. 
 
 

2.2 Reaction rates 
Reaction rate A of particles travelling through a material with nuclei of that material is 
parameterised by the reaction cross section σ(v), which is the property of the material and the 
neutron flux spectrum φ(v), which is related to the density of the particles travelling through 
the material n(v) and their speed v: 
 
  φ(v) = v n(v) .           (1) 
 
Expressed in terms of the kinetic energy E of the incident particles, which is related to the 
speed v by the relation E=½ mv2 (where m is the particle mass), the reaction rate is: 

  ( ) ( ) dEEEKA ∫
∞

=
0

ϕσ  ; φ(1eV) = 1.       (2) 
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The normalisation of φ(E) is quite arbitrary and is chosen for convenience. The constant K 
ensures that the integral of φ(E) over energy results in the total neutron flux. In terms of 
neutron speed the equivalent expression for the reaction rate can be written as: 

  ( ) ( ) dvvnvvA ∫
∞

⋅=
0

σ .          (3) 

The integral can be split into the thermal part up to energy Ecd (corresponding to neutron 
speed vcd) and the epithermal part: 
 

  ( ) ( ) ( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+= ∫∫

∞

dEEEdEEEKA
cd

cd

E

E

ϕσϕσ
0

.      (4) 

 
Furthermore, the epithermal flux can be decomposed into the resonance part φr and the 
suitably normalised fast (fission) spectrum contribution φh for convenience: 
 
  ( ) ( ) ( )EhEE hr ϕϕϕ += .         (4a) 
 
Precise modelling of the fission spectrum contribution does not have a significant influence 
on calculated reaction rates in well-thermalised spectra; it might improve the modelling of 
reaction rates in irradiation facilities with a strong epithermal neutron spectrum component, 
but it is crucial for threshold reactions. The reaction rate equation becomes: 
 

  ( ) ( ) ( ) ( ) ( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++= ∫∫∫

∞∞

dEEEhdEEEdEEEKA
cdcd

cd

E
h

E
r

E

ϕσϕσϕσ
0

.  (4b) 

 
The above expressions are exact; the problem is that neither the cross sections nor the neutron 
flux spectrum are known accurately enough due to the strong dependence of the parameters 
on neutron energy. For example, to represent the capture cross section of 238U to within 0.1% 
tolerance, several 100 000 data points are needed. Such detailed representation is necessary to 
ensure proper account of the Doppler broadening effect due to temperature and for the 
estimation of the self-shielding effects. 
 
Without loss of generality, the integral equation (4b) can be cast into the expression 
commonly used in NAA by a suitable definition of constants: 
 

  A = φt  σ0 g  Gt  +  φf  (I Gf + J h) = ( )⎥
⎦

⎤
⎢
⎣

⎡
++ hHGQ

f
Gg ftt

1
0σϕ , (5) 

where the symbols have the following meaning: 
 φt thermal flux, 
 φf epithermal flux, 
 f ratio of thermal to epithermal flux φt/φf , 
 σ0 thermal cross section at 2200 m/s neutron speed, 

g generalised g-factor that measured the deviation of the thermal cross section from 
1/v shape, 

 I effective resonance integral, 
 J effective fission integral 
 Q ratio of the resonance integral and the thermal cross section I / σ0, 
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 H ratio of the fission integral and the thermal cross section J / σ0, 
 h fission spectrum factor, 
 Gt thermal flux depression factor, 
 Gf resonance self-shielding factor. 
 
The applicability and the accuracy of the above expression depend on the approximations 
involved in determining the constants. Correspondence and definitions of individual terms are 
discussed in the sections that follow. 
 
To avoid the need to determine the neutron flux, the k0 standardization method of NAA relies 
on the measurement of the ratio of specific activities (and reaction rates) of the measured 
nuclide and some well-defined standard. The commonly applied standard is gold, because it 
has well-known cross sections and an associated gamma ray of accurately-known emission 
probability that is relatively easy to measure. The ratio of the specific activity of the sample 
Aa relative to the specific activity of the standard As is related to the ratio of reaction rates, 
given by the following expression: 
 

   
hHQGgfG
hHQGgfG

k
A
A

sssfst

aaafat
a

s

a

++
++

=
,

,
,0        (6) 

where 

   
sssa

aaas
a M

M
k

,0

,0
,0 σγ

σγ
Θ
Θ

=          (7) 

and the constants with index x equals a for sample and s for standard are: 
 
 Mx molar mass of sample, 
 Θx natural atomic abundance, 
 γx gamma emission probability of the measured gamma ray, 
 σ0,x thermal capture cross section. 
 

2.3 Thermal cross-section σ0, g-factor and thermal flux depression factor Gt 
Contribution of thermal neutrons to the reaction rate, expressed in “neutron speed” domain is 
given by: 

  ( ) ( ) dvvnvvA
cdv

t ∫ ⋅=
0

σ .          (8) 

For a 1/v absorber the cross section is: 

  ( )
v
vv 0

0σσ =            (9) 

where the symbols are: 
  v0 thermal neutron speed, 2200 m/s by definition, 
  σ0 cross section at neutron speed v0. 
 
Substituting into the equation for At 

  ( ) t

v

t NvdvvnvA
cd

00
0

00 σσ == ∫ ,         (10) 

where Nt is the total thermal neutron density (i.e. total number of neutrons per unit volume). 
Note that the reaction rate is independent of the neutron speed distribution n(v). 
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In the energy domain the equivalent expression for the thermal reaction rate is 

  ( ) ( ) dEEEKA
cdE

t ∫=
0

ϕσ          (11) 

Substituting the expression for kinetic energy into equation (9) for a 1/v absorber 

  ( )
E
EE 0

0σσ =            (12) 

where E0 is the energy of thermal neutrons corresponding to v0 and is equal to 0.0253 eV. 
Simplification of the integral for reaction rate in the energy domain is not possible. The 
reaction rate is proportional to the total thermal neutron density, but not to the total thermal 
neutron flux. 
 
Assuming that the thermal neutron flux has Maxwellian distribution  
 
  ( ) kTEeEE /−=ϕ ,           (13) 
 
where k is the Boltzman constant T is the temperature and K is the flux scaling factor, the 
thermal reaction rate is given by: 
 

  ( ) dEeEEKA
cdE

kTE
t ∫ −=

0

/σ .         (14) 

 
For a 1/v absorber 

  dEeEEKA
cdE

kTE
t ∫ −=

0

/
00σ .        (15) 

The average thermal cross section σth is defined by  
 

  
( ) ( )

( )

/
0 0

/

E kT

th E kT

E E dE K E E e dE

E dE K E e dE

σ φ σ
σ

φ

−

−
= =∫ ∫

∫ ∫
.    (16) 

 
Extending the integration limits from 0 to ∞, recognising the integral in the numerator as the 
gamma function Γ(3/2) and using the relation between the energy and the temperature E0=kT0, 
the average thermal cross section σth is related to the thermal cross section σ0 by the relation: 
 

  ( )
( )

3/ 2
0 0 0

02

/ 2
2th

K kT kT T
TK kT

σ π πσ σ= = .     (17) 

 
Note that this relation is strictly valid only for a pure 1/v absorber in a Maxwellian spectrum. 
In practice, the cross sections may deviate from the 1/v behaviour and the spectrum may be 
distorted (depending on the irradiation facility). Westcott attempted to correct for the non-
ideal cross section behaviour by introducing the Westcott g-factor, but still assumed that the 
spectrum was of Maxwellian shape. He even took the trouble to extract the 1/v part of the 
cross section contribution from the resonance range above the energy Ecd. At the time when 
the Westcott formalism was developed, the knowledge of cross section shapes was lacking 
and determining the spectral shape was based more on intuition and educated guessing than 
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anything else. Computational power posed additional limitations, which favoured analytical 
approaches. With many of these constrains relaxed, it is possible to introduce an alternative 
definition of the generalised g-factor, which can be used to calculate reaction rates without 
loss of generality and is applicable to non-1/v absorbers as well as spectra, which deviate from 
the Maxwellian shape. Comparing equations (4) and (5) see that: 
 

  ( ) ( ) dEEEKGg
cdE

tt ∫=
0

0 ϕσσϕ .        (18) 

Arbitrarily we define 

  ( ) dEEK
cdE

t ∫=
02
ϕπϕ .         (19) 

Neglecting the thermal flux depression factor Gt for the time being (assuming it is equal to 1), 
the definition of the generalised g-factor follows: 
 

  
( ) ( )

( )
0

0
0

0

2

2

cd

cd

E

th
E

E E dE
g

E dE

σ ϕ
σ
σππσ ϕ

= =
∫

∫
.       (20) 

Substituting the integrals with the expression for σth it is easily seen that for a 1/v absorber in a 
Maxwellian spectrum the above definition gives the well-known Westcott g-factor relation: 
 

  0
w

Tg g
T

= .           (21) 

 
In addition to the applicability to arbitrary spectra, the main difference in the generalised 
definition of the g-factor is the upper integration limit Ecd, commonly taken as 0.55 eV. 
Normally this does not affect the value of the g-factors in Maxwellian spectra because the 
distribution function falls off very rapidly and the contribution to the integral above 0.55 eV is 
very small. 
 
The generalised g-factor can be calculated easily from the cross sections, which are readily 
available for practically all nuclides of interest. The value of the calculated g-factor does not 
depend on the absolute magnitude of the cross sections, which may have significant 
systematic errors, but only on the shape. 
 
Introduction of the generalised definition of the g-factor extends the applicability of the 
methods, which rely on simple expressions for reaction rates such as given in equation (5), to 
irradiation facilities with spectra that deviate significantly from the Maxwellian shape in the 
thermal region. 
 
The thermal neutron flux depression factor Gt is often referred to as the “thermal self-
shielding factor”, but the term is misleading, because it implies primary dependence on the 
measured nuclide in the sample. This is indeed the case with resonance absorption in the 
epithermal range range, but not in the thermal range, where neutron transport effects play a 
dominant role. The thermal neutron flux depression factor is therefore determined by the 
macroscopic cross sections of the sample material as a whole. It can be calculated by a direct 
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transport calculation or from parameterised expressions, which are discussed in more detail in 
the literature [3,4] 
 

2.4 Resonance integral I, cadmium transmission factor Fcd and Q value 
The reference resonance integral I0 is usually defined by the product of the cross section and a 
pure 1/E spectrum, integrated between some chosen cadmium cutoff energy Ec and an 
arbitrarily chosen upper limit E3: 
 

   ( ) ( ) ( )
E

EdEEEI
E

Ecd

1;
3

0 == ∫ ψψσ .      (22) 

 
Similarly, the reference Q0 value is given by: 
 

   
0

0
0 σ

IQ = .           (23) 

This definition is rather artificial because such a spectrum with sharp cutoff energies cannot 
be produced experimentally. Measurements are usually done in thermal reactor spectra, which 
approximately follow the 1/E behaviour in the epithermal energy range. If the irradiation 
position is separated from the fission source (usually the reactor core) by a relatively thick 
moderator material region, relatively few fission neutrons reach the irradiation position 
directly, so the fission peak in the spectrum is small. The fission spectrum falls off rather 
rapidly above the peak, so the energy around 2 MeV is the natural upper cutoff energy. At the 
low energy end, thermal neutrons can be filtered by a strong absorber like cadmium, which 
has a huge resonance at 0.178 eV and relatively weak resonances at higher energies. A 1 mm 
cadmium filter effectively removes most neutrons below 0.55 eV. The total cross section of 
cadmium is shown in Figure 1 part a). The resonance integral can be approximated by the 
reaction rate Icd measured under a cadmium filter. 
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T(E) 

 
Figure 1:  a) Total cross section of cadmium.  

b) Cadmium transmission function for a 1mm thick cadmium cover. 
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Introducing the cadmium transmission function t(E), a more precise definition of the 
measured resonance integral under cadmium cover Icd in a real spectrum φ*(E) is obtained: 

  ( ) ( ) ( )∫
∞

∗=
0

dEEEEtIcd ϕσ .         (24) 

The above equation reduces to the previous idealised one if the range of integration is limited 
from Ecd to E3, the spectrum is pure 1/E, and t(E) is an idealised Heaviside function: 
 

  ( )
⎩
⎨
⎧

≥
<

=
cd

cd

EE
EE

Et
for1
for0

          (25) 

 
A more realistic form of the cadmium transmission function is obtained by assuming 
exponential attenuation of neutrons through cadmium: 
 
  ( ) ( )EdN cdcdeEt σ−=           (26) 
 
where d is the cadmium cover thickness, σcd is the cadmium cross section and Ncd is the 
number density of cadmium atoms in the cover.  It is calculated as: 
 

  
cd

Acd
cd M

NN ρ= ,           (27) 

 
where ρcd is the density of cadmium, NA the Avogadro number and Mcd the molar mass of 
cadmium. 
 
In a collimated narrow neutron beam incident on a small target, any reaction on cadmium 
would remove a neutron from its path. Using the total cross section for σcd the cadmium 
transmission function would be valid exactly. In practice, the beam profile and target 
dimension are finite; the neutron field may be isotropic, in which case there is a high 
probability that scattered neutrons would also reach the target. In such cases only the 
absorption reaction really removes the neutrons so it may be more appropriate to define σcd as 
the absorption cross section. In reality the truth is somewhere in between. Note that the form 
of the cadmium transmission function is the first approximation in the definitions introduced 
so far. 
 
Resonance integral defined by equation (23) is a measurable quantity. This is to be compared 
with the required form evident from equations (4) and (5). The cadmium transmission factor 
Fcd is introduced to compensate for the non-ideal shape of the cadmium filter, assuming the 
spectrum closely follows the 1/E behaviour and ignoring (or subtracting out) the high energy 
contribution of the fission spectrum: 
 

  ( ) ( ) ( ) ( ) ( )∫∫
∞

==
0

13

dEEEEt
F

dEEEI
cd

E

Ecd

ϕσϕσ .      (28) 

 
From this it follows that: 
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( ) ( ) ( )

( ) ( )∫

∫
∞

=
3

0
E

E

cd

cd

dEEE

dEEEEt
F

ϕσ

ϕσ
.         (29) 

 
Deviation of Fcd from unity arises from the cadmium transmission function and from the 
difference in the upper integration limit. The contribution of the later is small in the case of 
1/E spectrum with a small component of the fission neutrons in the spectrum. This is usually 
the case for irradiation facilities behind a reflector. Cadmium transmission factor values can 
be calculated from the cross sections by direct integration according to equation (29), 
assuming a 1/E spectrum and choosing appropriate integration limits in the numerator and the 
denominator (E3=2 MeV, say); the lower integration limit Ecd is chosen to approximately 
match the effective cutoff of the cadmium cover. It depends on the cadmium thickness. The 
value 0.55 eV is usually adopted for a cadmium thickness of 1 mm. 
 
Irradiation channels inside (or near) the reactor core may exhibit spectra with a significant 
contribution of fission neutrons. In such cases the neutron spectrum characterisation has to be 
done very carefully and the cadmium transmission factor calculated directly from the cross 
sections and the actual spectrum of the irradiation facility. 
 
In NAA databases very few nuclides contain Fcd factors that deviate from unity, and even 
those have to be considered with care. For example, commonly adopted value for 186W is 
0.908 and yields measured Q0 values, which disagree by nearly 10% from those calculated 
from the energy-dependent cross sections in evaluated nuclear data files [8]. Direct 
calculations, using cross sections to simulate the transmission of neutrons through 1 mm 
cadmium layer, results in a cadmium transmission factor that differs from unity by about 1%. 
Furthermore, the measured value of 0.908 is not given with the associated uncertainty. From 
the original paper on the measurement the uncertainty is likely to be high and the quoted 
measured Fcd is probably incorrect. 
 
With the resonance integral uniquely defined, the Q value for a general neutron spectrum can 
also be defined in a way analogous to equation (23): 
 

   
0σ

IQ =            (30) 

 
The reference Q0 for an ideal 1/E spectrum is already defined by equation (23). Relation 
between the reference Q0 and the general Q is discussed in Section 2.5. Some comparisons 
between measured values and those calculated using cross sections from evaluated nuclear 
data files are given in Section 3.2. 
 

2.5 Resonance self-shielding factor Gf 
In the absence of strong absorbers the neutron spectrum as a function of energy is a smooth 
function. When resonance absorbers are present in significant quantities, the resonances tend 
to create dips in the spectrum shape. This phenomenon is well known in reactor physics and 
has been dealt with extensively in the so-called resonance theory. In the intermediate-
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resonance approximation (IR) the real spectrum φ*(E) is expressed in terms of the spectrum 
unperturbed by the resonance absorber φ(E) by the expression: 
 

  ( ) ( )
( ) ( ) ( )E

EE
E

E
sa

p φ
σσλσ

σλσ
φ

++
+

=∗

0

0         (31) 

where: 

σ0 Bondarenko background cross section, which measures the effective dilution of 
the resonance absorber, 

 σa absorption cross section of the resonance absorber, 
 σs scattering cross section of the resonance absorber, 
 σp potential scattering cross section of the resonance absorber, 
 λ Goldstein - Cohen parameter -  a ''measure'' of the resonance width, 
 φ(E) smooth spectrum (unperturbed by the resonances). 
 
The intermediate resonance approximation is an improvement to the narrow resonance (NR) 
approximation (λ=1, implying that the resonances are so narrow that any scattering event will 
decrease neutron energy sufficiently to fall outside the resonance) and the wide resonance 
(WR) approximation (λ=0, assuming that energy loss in a scattering event is small compared 
to the resonance width). 
 
Resonance theory is based on the assumption that that the absorber atom is surrounded by a 
moderator of approximately constant cross section, represented by the Bondarenko 
background cross section, which effectively measures the dilution of the absorber and is 
defined as the macroscopic potential cross section of the moderator per absorber atom: 
 

  ∑=
i

iii
a

N
N

σλσ 1
0           (32) 

where 
Na absorber atom number density, 
Ni number density of the i-th moderator nucleus, 
σi cross section of the i-th moderator nucleus, 
λi parameter (related to the Goldstein-Cohen parameter) that measures the moderator 

effectiveness. By definition it is equal to 1 for hydrogen. Further details can be found 
in the documentation of the WIMS-D Library Update Project [5]. 

 
The above derivation is applicable to infinite homogeneous media, but irradiated samples are 
of finite dimensions. In the surrounding medium (analogous to a moderator without strong 
resonance absorbers) the spectrum is relatively smooth. The neutrons enter the sample 
(containing a resonant absorber), but their depth of penetration at resonance energies is 
limited due to the absorption in the resonances. The process is therefore similar to the one in 
an infinite medium. In reactor physics this is called the equivalence theorem. Equation for the 
Bondarenko background cross section is modified to include the so-called escape cross 
section Σe, which accounts for the finite dimensions of the sample: 
 

  ⎥
⎦

⎤
⎢
⎣

⎡ +Σ= ∑
i

iiie
a

N
N

σλσ 1
0          (33) 
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The escape cross section is given by the simple expression: 
 

  
l
a

e =Σ             (34) 

where 
 a Bell factor (usually assumed constant with value 1.16), 
 l mean chord length. 
 
The mean chord length for a convex volume is given by 
 

  
S
Vl 4=             (35) 

where V is the volume and S is the surface area. 
 
Epithermal self-shielding factor describing the effects of resonance absorption can be defined 
by: 

  
( ) ( )

( ) ( )∫

∫
=

3

3
*

E

E

E

E
f

cd

cd

dEEE

dEEE
G

ϕσ

ϕσ
          (36) 

With weighting spectrum φ*(E)  defined by equation (31). A practical procedure is to generate 
a library of self-shielding factors for all nuclides of interest, and particularly the main likely 
constituents of sample materials with significant absorption properties, tabulated as a function 
of the Bondarenko background cross section σ0. The user can then calculate the relevant value 
of σ0 from equations (33-34) and retrieve the required Gf by interpolation. The main 
approximations in this approach are those inherent in the IR resonance approximation and the 
assumption that Gf factors are not sensitive to small deviations in the weighting spectrum 
φ(E), which is usually assumed to be of the 1/E form. 
 
 

2.6 Effective resonance energy Er 
The resonance integral and the Q value depend on the shape of the neutron spectrum in the 
epithermal range. Assuming that the spectrum deviates only slightly from the 1/E behaviour 
such that it can be represented by 
 

   ( ) αφ += 1

1
E

E  ,          (37) 

 
where α is a constant, and assuming that resonances can be represented by the single-level 
Breit-Wigner formula, an analytical expression is commonly in use in NAA for the 
dependence of the Q value on α in terms of the reference Q0 value in a pure 1/E spectrum: 
 

   ( ) ( ) ( )( )αα α
α

55.012
429.0429.00

+
+−=

rE
QQ       (38) 
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To verify the validity of the approximation for Q(α), exact values were calculated directly 
from the cross sections based on Equations (28) and (20) for a set of α values in the range 
between –0.1 and +0.1, and using idealised cadmium transmission function with cutoff at 0.55 
eV.  By inverting equation (38) an expression for Er can be obtained: 
 

   ( )
( ) ( )( )

α

αα
α

α

/1

0

55.012
429.0

429.0

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

+
−

=
Q

QEr       (39) 

 
The average Er is defined by the integral 
 

  ( )∫−
=

hi

lo

dEE r
lohi

r

α

α

αα
αα

1          (39a) 

 
and the integration limits αhi and αlo are chosen +0.1 and –0.1, respectively. 
 

The calculated Er(α) for different values of α were found to vary by up to 30% from the 
average value Er.  The α−dependent Er(α), (normalised by the average Er) for different 
nuclides is shown in Figure 2.  The calculated average effective resonance energy Er also 
differs quite significantly from the values usually adopted for NAA, which were derived from 
the available resonance parameters.  The comparison is shown in Table 1.  In the case of 94Zr 
the difference exceeds a factor of two. 
 

Table 1: Comparison of Effective Resonance Energies Er for Neutron Activation Analysis 

Er 
nuclide 

Kayzero
[eV]

This work
[eV]

Dif. 
[%]

Mn-55 468.0 488.1 4.3
Co-59 136.0 122.4 -10
Zn-64 2560.0 4268.2 67
Zr-94 6260.0 15401.0 146
Zr-96 338.0 387.2 15
Mo-98 241.0 319.5 33
Mo-100 672.0 899.5 34
Au-197 5.7 5.7 0
Th-232 54.4 74.4 37
U-238 16.9 18.2 7.7

 
 
A similar analysis was performed for Q(α). Exact values calculated by direct integration of 
equations (22) and (23) were compared to the approximate ones based on equation (38), using 
Q0 and average Er calculated as described before.  For easier comparison between different 
nuclides all values were normalised with the corresponding Q0 value.  The comparison is 
shown in Figure 3.  Fortunately it turns out that the dependence of Q(α) on Er is rather weak. 
Although the α−dependence of Er is quite strong, the use of the average value in conjunction 
with equation (38) does not introduce a large error into the calculated Q(α).  The differences 
are larger for nuclides with a higher effective resonance energies Er and may exceed 3% in 
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some cases.  It is interesting to note that equation (38) always leads to the underprediction of 
Q(α). 

 
Figure 2: Variations of Er with α for different nuclides. 
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Figure 3: Comparison of exact and approximate Q(α) values for different nuclides. 
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2.7 Fission Spectrum Contribution to Reaction Rate 
Mathematically the fission spectrum integral is easy to define: 
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The fission spectrum fraction h depends on the spectrum normalisation. Once the fission 
spectrum is defined, the fission spectrum integrals can readily be calculated from the cross 
sections. Unfortunately this factor cannot be determined easily from the capture measurement, 
but we can make use of some threshold reactions for this purpose. An equation analogous to 
(6) can be written for threshold reactions: 
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and the constants have their usual meaning. Note that in the above expression there is no 
thermal component. There might be a small contribution to the “resonance integral” for 
reactions with threshold below the upper cutoff energy for the resonance integral. Note also 
that the k0 factor is defined without the cross section in the numerator, because it is zero for 
threshold reactions. 
 
The quantities in the denominator of the expression for k0 refer to the standard and are well 
known. The largest uncertainty probably originates from the gamma emission probability of 
the threshold reaction product. However, if threshold reactions are only needed to determine 
interference lines in the spectra, their uncertainties are less important. 
 

2.8 Neutron Spectrum 
Neutron spectrum in thermal reactors is determined by the fission neutron source, the 
slowing-down process at intermediate energies, and the thermal region where neutrons are in 
equilibrium with the surrounding crystal lattice. It is useful to define an analytical function 
that is representative of the general features of the spectrum. Typical light water reactor 
spectrum, which can be used as a weighting function for averaging cross sections and 
calculating reaction rates is approximated by the thermal Maxwellian part ψt, the epithermal 
region ψe and the fission spectrum ψf  defined by: 
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where: 
 k  is the Boltzman constant,  
αj  are the constants that determine deviation from the 1/E spectrum in the epithermal 

range, 
Wa,Wb are the parameters of the Watt fission spectrum, 
T  is the temperature, 
Ct,Cf  are continuity constants such that ψt(Et)  = ψe(Et) and ψf(Ef)  = ψe(Ef), respectively, 
Et,Ef  are breakpoints between thermal, epithermal and the fast spectrum range, 
m fast neutron slowing-down factor (equals 0 for no slowing-down and 1 for fast 

neutron sources surrounded by a moderator). It may vary linearly with energy, in 
which case the coefficients m0 and m1 are defined. 

 
The full function ψ  representing the spectrum is defined by: 

 
 t t e e f fK K Kψ ψ ψ ψ= + + ,      (41) 

 
where   Ke =  1 for  Et < E < Ef 

0 otherwise 
 

Kt = 1 + Ot - Ke 
Kf = 1 + Of - Ke. 

Parameters Ot and Of can be chosen arbitrarily to define overlap for a smooth transition 
between different regions (0 for no overlap, about 1 for a moderate overlap, typically). 
 
The weighting function thus defined gives the spectrum shape with the required 
characteristics and a smooth transition between the thermal, epithermal and the fast energy 
range.  It is equal to 1 at energy 1 eV. 
 
Special features of the function are: 

• Thermal region is a superposition of three Maxwellian functions at different 
temperatures, which allows one to model distortions in the spectrum at low energies. 

• The α- parameter that measures the deviation from the 1/E shape is allowed to be 
energy-dependent. 

• Fast fission spectrum can be the Maxwellian or the Watt function, with a correction to 
account for fast-neutron slowing-down. 

 

3 Determination of parameters 

3.1 Parameters determined from evaluated cross section data 
As already mentioned, some of the parameters are difficult to determine experimentally. 
Having precise definitions of the constants from first principles allows us to calculate them 
from the basic nuclear data (particularly the energy-dependent cross sections in evaluated 
nuclear data files) at least in cases, when the parameters do not depend on the absolute 
accuracy of the cross section values but mainly on the shape in a particular energy range. 
Examples of such parameters are: 
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g generalised g-factor defined by equation (20) is usually very close to one. It is very 
difficult to design an experiment for a direct measurement of the g-factor that would be 
more accurate than the value calculated from cross section data, except perhaps in cases 
where the g-factor differs strongly from one. The ratio of the g-factors of the measured 
material to the standard can be determined from the measurements of the k0 factors in a 
thermal and a cold neutron beam (see next section below), knowing that at lower 
neutron energies the deviations of the cross sections from the 1/v behaviour is smaller. 
The precondition for such measurement is good knowledge of the shape of the spectra. 
Generally it is preferable to use measurements of this kind for the validation of the g-
factors calculated from the cross sections rather than their direct determination. 

Fcd cadmium transmission factor defined by equation (29) accounts for the difference 
between the idealised and the measurable resonance integral, taking explicitly into 
account the interference between the absorber and the cadmium resonances. It would be 
possible to choose a definition of the resonance integral that would more closely match 
the measured one, but this would only obscure its subsequent application in the 
calculation of reaction rates. Defining the cadmium transmission factor to correct for the 
difference between the measured and the idealised resonance integral in a 1/E spectrum 
between 0.55 eV and 2 MeV is a practical convenience. 

Gf epithermal self-shielding factor accounts for detailed changes in the spectrum due to 
resonance absorption. Theoretical approach defined by equations (31) to (36) is well 
established in reactor physics. and gives good results even for absorbers in relatively 
high concentrations. There is no reason to question its applicability in NAA, where the 
levels of self-shielding are usually lower. Accurate direct measurements were reported 
for some monitor materials by irradiating samples of various thicknesses and 
extrapolating to zero, but such a procedure is not practical for general implementation to 
all materials that may occur in real samples; it may serve well for the validation of the 
resonance self-shielding factors calculated from the cross sections. 

Er effective resonance energy. 
σh cross section in the fission spectrum energy range. 
 

 
Contrary to the constants listed above, the thermal “self-shielding” (or flux depression) factor 
Gt is not a property of the measured nuclei but of the matrix in which they are embedded. The 
presence of strong absorbers may cause flux depression (and hence a decrease in the reaction 
rate), while abundance of organic materials may actually increase the thermal flux locally due 
to internal moderation. Empirical expressions for the calculation of Gt are described in the 
literature. 
 

3.2 Parameters of the analytical spectrum function 

If no additional information is available, the user can assume that the spectrum is purely 
Maxwellian with strength defined by factor f at thermal energies and deviates by a fraction α 
from 1/E in the resonance range up to 2 MeV, say. This is consistent with the traditional 
approach in NAA. 
 
Rapid advances in computational power made possible the development of detailed full-core 
models (including irradiation facilities), with which the neutron spectrum can be calculated. A 
Monte Carlo simulation of the spectrum in the central channel of the TRIGA Mark-II reactor 
in Ljubljana is presented in Figure 4, labelled “Modulated fitting function”. Note the structure 
in the spectrum below the fission peak, which is due to the oxygen resonances. 
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The calculated spectrum was fitted with parameter α having linear dependence, thermal 
spectrum given by parameter f with a small contribution of a secondary Maxwellian at 600 K 
to fit the shape at about 0.2 eV … 
 
The analytic function fit reproduces very well the overall shape of the spectrum, but not the 
fine details. To remedy this we define the modulating function as the ratio of the calculated 
spectrum with the analytic function. Obviously, scaling the analytic function with the 
modulating function reproduces exactly the calculated spectrum. Modulation of the analytic 
fitting function may be suppressed in the regions where the detailed shape of the calculated 
spectrum is unreliable  (for example, below 0.4 eV and above 4 MeV). 
 
If for some reason we need to change slightly the fitting function parameters, the overall 
characteristics of the spectrum change, but the detailed shape defined by the modulating 
function is preserved. The curve in Figure 4 labelled “Fit RR (All)” was obtained by allowing 
parameters f, α and m to vary so as to reproduce better the measured reaction rates of 
dosimetry monitors. 
 

 
Figure 4: Calculated spectrum fitted with analytical spectrum function. 
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4 Experimental Measurements 

4.1 k0 measurements, thermal capture cross section and gamma emission probability 
From equations (6) and (7) it follows that the k0 factor can be determined from the measured 
ratio of activities of the nuclide of interest (subscript a) and the standard (subscript s): 
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The accuracy of the measured k0 factor depends on the neutron spectrum in which the 
measurement is done. If the epithermal spectrum contribution is small, the f factor is large, 
making the contributions of the Q and H terms negligible. The only parameter influencing the 
result in addition to the measured ratio of specific activities is the ratio of the g-factors of the 
measured nuclide and the standard. 
 
The measured k0 factor is proportional to the ratio of the partial gamma production cross 
sections σγ, defined by the product of the gamma emission probability Pγ and the capture cross 
section σ0: 
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Partial gamma production cross sections can be used in combination with other experiments 
to determine the thermal cross section and the gamma emission probabilities. This possibility 
was generally not exploited, except in a few cases where the experimentalists explicitly 
reported the derived cross section values in the publication [6]. A more rigorous effort in this 
direction was made in the re-evaluation of the thermal capture cross section of 238U, where all 
available measurements of the cross sections, partial cross sections (including k0 values) and 
directly-measured gamma emission probabilities were analysed simultaneously by a 
generalised least squares procedure, taking correlations into account whenever possible [7]. 
This method yields a self-consistent set of cross sections, gamma emission probabilities, their 
uncertainties and correlations. 
 

4.2 Q0 measurements by the cadmium ratio method 

The cadmium ratio is defined by the ratio of bare and cadmium covered reaction rates: 
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from which it follows that 
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The first term in the expression for Q is well known in the literature on neutron activation 
analysis. The second term represents the correction for the fission spectrum contribution and 
vanishes if either the fission spectrum integral or the fission spectrum contribution tends to 
zero. 
 
The reference Q0 can be obtained through relation derived from equation (38): 
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The only assumption in this definition is that parameters Fcd and Gf are approximately 
independent of α and that equation (38) adequately describes the dependence of Q on α. 
 
It is important to consider error propagation, which originates from the uncertainty ∆f in the 
measured value of f, ∆Rcd in the measured cadmium ratio, ∆h in the fission spectrum 
contribution and ∆H in the fission spectrum integral. Note however, that the problem is ill-
posed when the measured cadmium ratio is close to one. 
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Different sets of evaluated nuclear data files were processed to obtain constants for a number 
of nuclides that are commonly used as monitors to determine the spectral parameters.  Label 
EAF-99 refers to the European Activation Library, RNAL to the Reference Neutron 
Activation Library, JENDL/D-99 to the Japanese activation library and FENDL/A-2 to the 
FENDL-2 activation library.  The Nudat results were retrieved from the IAEA web page 
“http://www-nds.iaea.org/”.  The corresponding values commonly applied in NAA are 
labelled Kayzero.  The results are compared in Table 2.  The column “+/- %” gives the 
specified uncertainty while the columns labelled “Dif [%]” give the percent difference from 
the Nudat values. 
 
Comparison of the Q0 values shows that the Kayzero data for important monitor reactions 
agree very well with the Nudat values, except for zirconium.  There is also good agreement 
with the values derived from evaluated data files.  Particularly, excluding 55Mn and 94Zr, the 
EAF-99 values of Q0 are practically always within the experimental uncertainty of the Nudat 
values. 

Table 2: Comparison of Q0 nuclear constants for neutron activation analysis. 

 Kayzero +/- % Nudat +/- % EAF-99 Dif. [%] RNAL Dif. [%] JENDL/D99 Dif. [%] FENDL Dif. [%]

Mn-55 1.053 2.6 1.053 3.7 0.845 -19.7 1.110 5.5 0.845 -19.7 1.110 5.5
Co-59 1.993 2.7 1.990 2.9 1.930 -3.1 1.893 -4.9 1.934 -2.8 1.925 -3.3
Zn-64 1.908 4.9 1.908 7.0 1.933 1.3 1.923 0.8 -  1.922 0.7
Zn-68 3.190 1.4 -  3.632 3.634 -  - 
Zr-94 5.306 3.3 4.609 9.6 6.743 31.6 6.747 46.4 -  6.743 46.3
Zr-96 251.6 0.97 231.4 10.5 242.1 4.4 - -  242.1 4.6
Mo-98 53.10 6.3 53.08 9.4 54.01 1.7 54.06 1.9 -  54.01 1.8
Mo-100 18.84 4.3 18.84 5.6 19.65 4.1 19.46 3.3 -  19.40 3.0
Au-197 15.71 1.8 15.71 1.9 15.48 -1.5 15.46 -1.6 15.45 -1.6 15.44 -1.8
Th-232 11.53 3.6 11.5 4.3 11.1 -4.1 - 10.9 -5.4 10.9 -5.5
U-238 103.4 1.3 103.4 1.8 100.0 -3.4 - 99.6 -3.6 99.2 -4.0
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4.3 Determination of spectral parameters 
The spectral parameters in NAA are mainly the spectral ratio f and the spectrum slope 
parameter α. Equivalent spectral parameters implied by equation (40) are the energy 
breakpoint Et between the thermal and the epithermal spectrum and the αj  parameters.  Note 
that α is allowed to be energy-dependent, parameterised by second-order polynomial 
coefficients α0,  α1 and α2 in log(E) domain.  Normally the nuclear constants for NAA are not 
very sensitive to the other parameters that appear in equation (40). 
 
Traditionally, the spectral ratio f is determined from the cadmium ratio of the gold standard, 
but measured cadmium ratios of other nuclides may be used as well.  Similarly, the α 
parameter (assumed constant) can be determined from a linear fit in the log-log scale of H(j) as 
a function of α for several monitor nuclides (j) where H(j) is given by: 
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The fission spectrum fraction can be determined from reaction rates sensitive to the fission 
spectrum using equation (6). The obvious candidates are threshold reactions that also have 
well-defined constants for the capture process, which may serve as a secondary standard. The 
expression for the fission fraction is: 
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The expression for the threshold k0 factor defined by equation (39d) is applicable and the 
standard in this case is a capture reaction for one of the isotopes of the same element. The 
above expression becomes much clearer if we note that for a threshold reaction ga is zero by 
definition, Qa is (close to) zero and Aa/As and Hs are usually small: 
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Note that equation (50) is given for clarity only. In practical calculations there is little penalty 
for using the full expression of equation (49). 
 
Alternatively, the spectral parameters can be determined directly by minimising χ2, which is 
defined as the sum of the squares of the relative differences between the measured and 
calculated reaction rate ratios or specific activities.  Reaction rate ratios can be calculated 
from energy-dependent cross sections and the parameterised neutron spectrum.  The 
GRUPINT code was developed for this purpose: it calculates reaction rates by direct 
integration of the product of the differential cross sections with the parameterised neutron 
spectrum and performs χ2- minimisation by a systematic variation of the spectral parameters. 
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The additional advantage of direct fitting of reaction rates is that non-linear behaviour of 
parameters α and m can easily be accommodated. 
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